A személyi számítógép részei

Számítógép

Számítógépnek nevezzük azokat az elektronikus és elektromechanikus gépeket, amelyek program által vezérelve adatok befogadására, tárolására, visszakeresésére, feldolgozására és az eredmény közlésére alkalmasak.

Szoftver

A szoftver a számítógépet működtető programok (rendszerszoftverek) és a számítógépen futtatható programok (alkalmazói szoftverek) összessége. Ide tartoznak még a számítógépen tárolt adatok és a kapcsolódó dokumentációk is.

Hardver

A hardver a számítógép elektronikus és mechanikus eszközeinek összessége. Ebbe a fogalomkörbe beletartoznak a különféle kiegészítő eszközök és tartozékok is. (CPU, Memória, Alaplap, Háttértárak, Perifériák, Kábelek, Csatlakozók)

1.    A személyi számítógép sematikus felépítése

A PC (Personal Computer=személyi számítógép) főbb részei (Lsd. 1. Melléklet):

  • CPU (Central Processing Unit): központi feldolgozóegység, mikroprocesszor
  • Busz rendszer: kapcsolatot teremt a CPU, a memória, valamint az egyes perifériák között (vezetékek és vezérlő áramkörök).
  • Memória: végrehajtás alatt tartalmazza a programot, a végrehajtáshoz szükséges adatokat digitális formában. (ROM: Read Only Memory – csak olvasható); Címkézhető, írható, olvasható (RAM).
  • Merevlemez: a számítógép elsődleges háttértára, a programokat és az adatokat tartalmazza felhasználásuk előtt és után.
  • Optikai lemez: az egyik legelterjedtebb cserélhető lemezes háttértároló.
  • Egyéb:

o   Alaplap: a kisegítő áramkörök (órajel-generátor, buszrendszerek, csatoló felületek az illesztők számára) egységbe foglalása

o   Tápegység: a számítógép egyes részeit megfelelő szintű és stabilitású árammal látja el

o   Ház: fizikai egységbe foglalja a gép részeit

A gyakorlatban a CPU és a memória az alaplapon helyezkedik el. Az alaplap egy többrétegű nyomtatott áramköri lap, amelyen különböző méretű és alakú csatlakozók helyezkednek el, melyek biztosítják az összeköttetést a hardvereszközök és a processzor között. Alaplap többek között a processzort, a buszrendszereket, a kiszolgáló áramköröket, a perifériák kapcsolódásához szükséges illesztő felületeket és a tápfeszültség csatlakozását tartalmazza.

2.    Központi vezérlőegység (CPU: Central Processing Unit) és jellemzése

A központi vezérlőegységet processzornak is nevezzük. A processzor nagyintegráltságú áramköri elem. Fejlesztése során többféle tokozású és csatlakozású megoldást készítettek.

Feladata:

  1. a gép irányítása,
  2. a feldolgozási folyamatok vezérlése,
  3. az adatok feldolgozása,
  4. számítások elvégzése,
  5. a memóriában tárolt parancsok kiolvasása és végrehajtása,
  6. az adatforgalom vezérlése.

Processzor részei:

A számítógép processzora egy fizikai egységet képez, logikailag azonban két fontosabb részegységre bontható.

  1. a)A vezérlőegység (CU: Controll Unit):

□   a memóriában tárolt program dekódolását

□   és végrehajtását végzi.

Fontos feladata a processzor-részegységek működésének összehangolása.

  1. b)Az aritmetikai és logikai egység (ALU:), ami a számítási és logikai műveletek eredményének kiszámításáért felelős. Ez az egység hajtja végre azokat az utasításokat, melyeket a vezérlő egység előkészített. Néhány alapvető műveletet tud csak végrehajtani, de ez elegendő: összead, kivon, kezeli a helyi értéket (átviteli bitek), fixpontos szorzásra és osztásra, bitek mozgatására jobbra vagy balra, egyszerű logikai műveletekre képes. Minden egyéb, a processzor által elvégzendő műveletet ezekre az elemi tevékenységekre vezetünk vissza.

A mai személyi számítógépek többségében az – eredetileg az Intel által kifejlesztett – x86-os (286, 386, stb.) elvek alapján működő processzorokat találunk. A személyi számítógépekben használt Pentium, Pentium II, Celeron, Pentium III processzorok az Intel; a K5, K6, K6-2, K7 jelzésűek pedig az AMD cég termékei.

Az utasítások végrehajtásához a CPU átmeneti tárolóhelyeket, ún. regisztereket használ, amelyek gyorsabban elérhetők, mint a memória.

A processzor hűtése

A processzorok működése közben gondoskodni kell megfelelő hűtésről, amit vagy a processzorra szerelt hűtőventillátorral vagy hűtőbordával oldanak meg.

Alaplap felé irányuló szellőzés                             Alaplappal párhuzamos szellőzés

A mai processzorok olyan magas frekvencián dolgoznak, hogy egyszerűen elolvadnának az elektromos áram hőhatása miatt: ezt kell hűtőrendszerrel orvosolni. Több fajtája létezik:

Processzor jellemzői:

Sebesség:

Kétféle módon szokás megadni. Az egyik esetben az órajel frekvenciát adjuk meg, amely a processzor működését (áramköreit) vezérli. Mértékegysége a Hz és ennek többszörösei (MHz; GHz). A mai irodai számítógépek processzorainak órajel frekvenciája 2-3 gigahertz (GHz) tartományban van. (Ha az órajel például 3 GHz, akkor a processzor 3 milliárd műveleti ciklust végezhet el másodpercenként.) Egyszerű mérőszám, de az effektív teljesítménnyel kapcsolatban nem mindig mértékadó.

A másik mérőszám a teljesítmény oldaláról közelít: azt adja meg, hogy időegység alatt hány utasítást hajt végre a processzor. Mértékegysége a MIPS (Million Instruction Per Second).

Adatszó-hossz

A processzorok másik fő jellemzője, hogy hány bites adatokat képesek feldolgozni egyszerre. Az adatszó‑hossz az a legnagyobb érték, ahány biten ábrázolt adatot a processzor egyszerre feldolgozni képes. Minél nagyobb ez az érték, annál kevesebb lépésben képes egy-egy elemi adatot feldolgozni a processzor. Manapság 32 és 64 bites processzorokkal szerelik fel a gépeket.

3.    Memóriák és jellemzésük

A számítógép az adatok és a programok tárolására az alaplapra helyezhető memóriát használ. A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása kettes számrendszerben történik. A memória fontosabb típusai a RAM, a ROM, a PROM, az EPROM, az EEPROM és a Flash memória. Sok betűszóval jelzett félvezető alapú tárat használunk a számítógépben.

a)   RAM

RAM (Random Access Memory) véletlen elérésű írható és olvasható memória. A RAM az a memóriaterület, ahol a processzor a számítógéppel végzett munka során dolgozik. Ennek a memóriának a tartalmát tetszőleges sorrendben és időközönként kiolvashatjuk vagy megváltoztathatjuk (tetszőlegesen címezhető). A RAM-ot más nevén operatív tárnak is nevezzük.

Minden bevitt adat először a RAM-ba íródik, és ott kerül feldolgozásra. Itt helyezkednek el és ezen a területen dolgoznak az aktuálisan működő programok is. Egy-egy program indítása után a program, vagy annak egy része ide töltődik be, s a végrehajtás is innen történik.

Lényeges, hogy a RAM csak átmenetileg tárolja az adatokat, így a gép kikapcsolásakor ezek az adatok elvesznek. A RAM tehát nem alkalmas adataink huzamosabb ideig való tárolására, mert működéséhez folyamatos áramellátásra van szükség. Ha az áramellátás megszakad – például áramszünet vagy a gép kikapcsolása esetén – a RAM azonnal elveszíti tartalmát. A gép bekapcsolásakor a RAM mindig teljesen üres.

Számítógépünk teljesítményét jelentősen befolyásolhatja a RAM mérete: minél több van belőle, annál gyorsabb lesz a gépünk. Az alaplap típusa azonban meghatározza, hogy maximálisan hány MB memória használható.

b)   ROM

ROM (Read Only Memory) csak olvasható memória, amelynek tartalmát a gyártás során alakítják ki, más szóval beégetik a memóriába (csak egyszer írható tároló). Az elkészült ROM tartalma a továbbiakban nem törölhető és nem módosítható, a hibás ROM-ot egyszerűen el kell dobni. Előnye azonban, hogy a számítógép kikapcsolásakor sem törlődik (tartalmukat energiaforrás nélkül is megtartják), a beégetett adatok bekapcsolás után azonnal hozzáférhetőek.

Mivel a számítógép működéséhez valamilyen program elengedhetetlen, a RAM memória viszont a bekapcsoláskor üres, ezért a számítógép „életre keltését” szolgáló indítóprogramot, a BIOS-t (Basic Input Output System) egy ROM memóriában helyezik el. A BIOS-t ezért gyakran ROM BIOS-ként is emlegetik.

Az EEPROM (Electrically Erasable PROM) EPROM továbbfejlesztett változata, amelynek tartalma egyszerű elektronikus úton (speciális eszköz nélkül)újraírható.

Kiegészítő memóriakártyák:

Secure Digital (SD): MMC továbbfejlesztése, méretük azonos, az adattárolás mellett biztonsági funkciók is vannak beépítve.

4.    Perifériák feladata és csoportosítása

Perifériának nevezzük a számítógép központi egységéhez kívülről csatlakozó eszközöket, melyek az adatok ki- vagy bevitelét, illetve megjelenítésétszolgálják.

A felhasználók a számítógéppel végzett munkájuk során kizárólag a perifériákon keresztül kommunikálnak a számítógéppel. A perifériákat funkciójuk szerint három csoportra oszthatjuk:

  1. a)Bemeneti egységeknek (input perifériák) nevezzük azokat a perifériákat, amelyek kizárólag a számítógépbe történő adatbevitelt biztosítják. Az információ a külvilág felől a számítógép központi egysége felé áramlik.
  2. b)Kimeneti egységek (output perifériák): Láthatóvá/hallhatóvá teszik az ember számára az információ feldolgozás eredményét (mikroprocesszor által feldolgozott adatok megjelenítése).
  3. c)A ki- és bemeneti egységek kétirányú adatcserére képesek. Ide soroljuk a háttértárakat is, melyekkel jelentőségük miatt külön fejezetben foglalkozunk, valamint az egyéb adatcseréhez szükséges eszközöket.

További csoportosításuk lehetséges:

  1. A tartalom módosíthatósága szerint
  2. a)Csak írható: Szokás még végleges beírású tárnak is nevezni. A beírás irreverzibilis fizikai változást hoz létre a tárban. A beírt tartalom ezután már nem változtatható meg.
  3. b)Írható és olvasható: Az adatelem beírása itt is fizikai változást hoz létre, ez azonban felülírható. Így a tároló rekesz tartalma törölhető, felülírható. Az alkalmazott fizikai elv alapján más-más az a ciklusszám, amit a tárolórekesz még teljesíteni tud, gyakorlati szempontból azonban az ilyen tárakat tetszőleges alkalommal újraírhatónak szoktuk tekinteni.
  4. Adattárolási elv szerint
  5. a)Mechanikus: Lyukszalag, lyukkártya: hosszú ideje nem használják, mivel kicsi a fajlagos adattárolási sűrűsége, lassú az olvasása és nehézkes az írása, automatikus újraírás pedig nem lehetséges. Ma már csak történelmi jelentősége van.
  6. b)Félvezető: Az ilyen tár csak feszültség hatására tartja meg tartalmát. Nagyon gyors az elérése, kicsi a mérete és nagy a fajlagos adatsűrűsége, és habár nem olcsó, e jellemzői miatt a főtár (operatív memória) mindig félvezető alapú.
  7. c)Mágneses tár: Sokkal lassabb az elérése, mint a félvezető alapú tárnak. Energiaforrás nélkül is igen sokáig tárol, de a rögzített jelek zavarmentessége nem garantált. A gyakor­lat számára elegendő alkalommal lehet újraírni (törölni). Korábban tipikusan szekvenciális – szalagos – mágneses alapú tárolót használtak. Mágneses jelekre természetéből adódóan érzékeny.
  8. d)Optikai tár: Energiaforrás nélkül is biztonságosan tárol. (Aránylag friss technológia, ezért nincs megbízható adat arra nézve, hogy milyen időtartamig biztonságos tároló­eszköz. Ennek ellenére archiválásra széles körben használják!) Nagy adatsűrű­ség valósítható meg vele, kevéssé zavarérzékeny (pl. mágneses terek), ezért (másodlagos) háttértárként az egyik legelterjedtebb adattárolási forma.
  9. e)Egyéb: Gyakran több fizikai elv együttes alkalmazásával mindegyik lehetőség előnyeinek kihasználására törekednek a tervezők.

5.    Kommunikációs portok

A perifériák illesztőegységeken (csatlakozóhelyeken) keresztül csatlakoznak a központi egységhez. Egyes illesztők külön kártyán helyezkednek el, mások pedig az alaplapon találhatók. A perifériák és vezérlőegységük működését illesztő programok szabályozzák. A szabványos perifériák illesztő programja a Bios része, míg a speciális perifériák külön illesztő programmal rendelkeznek.

soros (serial) port az egyik legrégebbi, általános célú kommunikációs port. Egy számítógépben maximum négy ilyen csatlakozási lehetőség lehet, melyeket COM1, COM2, COM3 és COM4-nek nevezünk. A soros porton keresztül az információk bitenként kerülnek továbbításra, ezért kevés adat átvitelére képesek. Elsősorban a kis adatforgalmat igénylő eszközök – például egér, vagy telefonos modem – csatlakoztatására alkalmasak.

párhuzamos (parallel) portot általában a nyomtatók közvetlen csatlakoztatására használják. E csatlakozáson keresztül az adatok egy időben két irányba is áramolhatnak, a soros porthoz képest nagyobb sávszélességen. A számítógépen általában egy vagy két ilyen porttal találkozhatunk, melyeket LPT1 és LPT2 néven azonosítunk.

PS/2 portot az IBM fejlesztette ki, kifejezetten a billentyűzet és az egér csatlakoztatására. Ha az egeret a PS/2 portra csatlakoztatjuk, egy COM port felszabadul, amelyre más eszközt köthetünk.

Az USB (Universal Serial Bus) egy újonnan kifejlesztett nagy sebességű csatlakozási port, melyet a soros és párhuzamos portok kiváltására szántak. Egy USB porton keresztül maximum 127 külső periféria csatlakoztatható. Napjainkban a nyomtatók és szkennerek többsége rendelkezik ilyen csatlakoztatási lehetőséggel is. Az USB szabvány továbbfejlesztéseként megjelent a nagyobb átviteli sebességet biztosító USB 2.0.

Napjainkban az IEEE 1394 szabványú kommunikációs port – melynek legismertebb változata az Apple FireWire márkanevű terméke – az egyik legnagyobb adatátviteli sebességet biztosító eszköz. Egy IEEE 1394 portra maximum 63 külső eszköz csatlakozhat. Egyik jellemző alkalmazási területe a multimédiás eszközök, például digitális videokamerák számítógéphez történő csatlakoztatása.

Bár manapság úgy tűnhet, mintha az USB csatlakozókat már ősidők óta használnánk, ez a csatlakozó szabvány, mellyel szinte az élet minden területén találkozunk, 1996-ban lépett először a piacra.
Azóta sok változtatáson esett át, később megjelent a közismert téglalap alakú verziója, melyet a mindennapokból jól ismerünk, legyen szó mobiltelefon vagy kamera feltöltéséről, illetve billentyűzet, egér vagy pendrive számítógéphez történő csatlakoztatásáról.
Az új USB-C csatlakozó külsőleg egy kicsit más, mint elődje, azonban épp ez a kis változtatás fogja a világ minden táján a felhasználók életét megkönnyíteni :

  • Megfordítható csatlakoztatás – Korábban mindig fordítva akarta csatlakoztatni az USB-jét? Az USB-C csatlakozók minden irányból csatlakoztatva működnek, emiatt nem kell többet azzal bajlódnia, hogy fordítva próbálja összekötni vele a készülékeket.
  • Univerzális csatlakozó – Mindennel kompatibilis, ami hagyományosan is USB csatlakozásra képes, okostelefonok, táblagépek, laptopok, digitális fényképezőgépek csatlakoztatásához is alkalmas, de különböző operációs rendszerek összeköttetésére is képes. Így egyetlen porttal kiváltható számos másik, mint például a VGA, USB, HDMI vagy a Display port.
  • Akár 20-szor gyorsabb  –  Az USB-C akár 20-szor gyorsabb, mint az USB 2.0 szabvány, így akár 10 Gbps (gigabit per másodperc) adatátvitelre is alkalmas.
  • Nagyobb teljesítmény – Megfelel az USB PD szabványnak, az új USB-C csatlakozó akár 100 wattos teljesítmény leadására is képes, így szinte bármi feltölthető vele.